

The Hermine Project

Open source code and data
for legal compliance

Ospo OnRamp
September 16th, 2022

Who we are

A FOSS, community driven project

The Hermine project has
been started last year by six,
end-user, partner companies
in a semi-formal context.

- no dedicated organisation,
yet

- 3 committees (legal,
technical, steering)

Where we are

Position in the FOSS compliance
landscape

We rely heavily on (and try to contribute to) existing tools and
standards:
● OSS Review Toolkit
● SPDX
● NexB’s Scancode Toolkit
● FOSSology
● PURL
● Etc.

Position in the FOSS compliance
landscape

Detection /
Identification Validation

Tracking
over
time

 Execution

We are here

Other SBOMs related topics

We currently focus on legal aspects (license
compliance, export control), but we aim to take
into account at later stages of development:
● Sustainability (Dependency funding)
● Security

What we do ()

Foreword on the general spirit
towards compliance

Because the Hermine tool is designed by end
users, it’s goal is to be efficient and pragmatic
while significantly limiting legal uncertainty.

We want each organisation to be able to decide
on the level of risk they consider acceptable.

We analyse licences

One goal of the project is to provide a systemic
framework to analyse FOSS (or nearly-FOSS) licences,
so that:
● They can be handled programmatically
● Legal departements can share their interpretations
● It’s easier to reach a concensus about

interpretations, hence increasing legal predictability

We analyse licences : global
characterics

For each licence we a set of characteristics, like:
– The copyleft level
– The nature of rights granted (is there a patent grant, a

restriction for commercial usage,…)
– The choice of law & venue
– etc.

This set is still being worked on by the legal committee

We analyse licences : obligations

We breakdown every licence in a set of obligations, mentioning for each
how it is triggered:

– If it has been modified or not ;
– For which type of exploitation (e.g. : source distribution, network interaction,

or plain usage – for passive obligations)

If the meaning of the obligation is very common (e.g. there is more than
200 ways to say “copy the licence in the documentation), we link it to a
generic obligation.

This way, you care only about creating a process to implement the generic
obligation, not the 200 individual ones.

We create Open Source license
policies

● For each licence, you can define if it’s
acceptable by your organisation

● This acceptability can be linked to some
technical criterion (e.g. allowed for dynamic
linking, not static linking) or business context
(e.g. in a product pertaining to certain
categories only - WIP)

We define a core set of generic
obligations

● It is sometimes more efficient to follow the same
processes than to stick to the bare minimum of required
obligations (e.g. add the licence in the documentation,
even if it’s a BSD0)

● These generic obligations can be gathered in a “core
set”

● This allows to see only actions that would need specific
attention

What we do ()

We ingest SBOMs

● Currently we support
– a specific ORT format (EvaluatedModel), which is very thorough

and includes the notion scopes and sub-projects
– SPDX (partially tested)

● We plan to support Cyclone DX soon
● During ingestion it is possible to specify the type of

technical relation between the 3rd party component and
your own code base

We validate SBOMS

● In 5 steps:
1)Presence of valid SPDX licence expression

2)All licences have been reviewed by the legal department

3)“AND”s are actual “AND”s and not “OR”s

4)Choices (e.g. “MIT OR GPL-2.0-only”) have been decided

5)Licences are compliant to the organisation’s policy

● We handle generalisation of decisions

We handle exploitation choices

● For each scope/subproject, you can indicate the
type of exploitation that will be made of it

● The exploitation can be also set on a per
component usage inside a release

We calculate resulting obligations

● Combining the information attached to the
BOM and the qualification of the licences, we
calculate the obligations that have to be
followed for the release of your product to be
compliant.

We keep track of the usages of the
components

● As every validated BOM is stored in a DB, it’s
easy to know the releases of a product
containing a given version of a FOSS
component

● Metadata for components are populated from
scans (for ORT imports)

How we do it

We have a REST API and a Web UI

● The web UI is convenient for one-off
operations, like 3rd party audits

● REST API is key for most case, where
integration in the CI is mandatory

The stack we use

● Python / Django / Django REST / Bulma CSS
● No JS framework at the moment
● Currently database agnostic, but PostgreSQL

preferred
● Deployment through Docker with Caddy /

Gunicorn

We work in the open

● The code is available under the AGPL-3.0-only
license at:
– https://gitlab.com/hermine-project/hermine

● The documentation is available under the CC-
BY-4.0 license at:
– https://docs.hermine-foss.org/

https://gitlab.com/hermine-project/hermine
https://docs.hermine-foss.org/

Future

Next steps

● Publication of a V1 of the code by the end of
the year

● Stabilize the data model for licences /
obligations and select a license

● Publication of V1 of the dataset

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31

